Journal of Organometallic Chemistry, 412 (1991) 243–249 Elsevier Sequoia S.A., Lausanne JOM 21762

# Kristall- und Molekülstruktur von *cis*-Bis(tetrahydrothiophen)-bis{ $\eta^2$ -[4,4'-bis(trifluormethyl)biphenyl-2,2'diyl]} platin(IV)

Tony Debaerdemaeker \*.a, Herbert Roth<sup>b</sup> und Hans-Albert Brune \*.a

<sup>a</sup> Sektion Röntgen- und Elektronenbeugung und <sup>b</sup>Abteilung für Organische Chemie I der Universität Ulm, Albert-Einstein-Allee 11, W-7900 Ulm/Donau (Deutschland)

(Eingegangen den 23. Januar 1991)

#### Abstract

The structure of *cis*-bis(tetrahydrothiophene)bis{ $\eta^2$ -[4,4'-bis(trifluoromethyl)biphenyl-2,2'-diyl]}platinum(IV) has been determined by X-ray diffractometry. Space group *Cc*; a = 17.333(6), b = 16.072(5), c = 12.354(4) Å;  $a = \gamma = 90.0^{\circ}$ ,  $\beta = 96.48(4)$ ; Z = 4.

#### Zusammenfassung

Die Struktur des *cis*-Bis(tetrahydrothiophen)-bis{ $\eta^2$ -[4,4'-bis(trifluormethyl)biphenyl-2,2'-diyl]}platin(IV) wurde röntgen-diffraktometrisch bestimmt. Raumgruppe *Cc*; a = 17.333(6), b = 16.072(5), c = 12.354(4) Å;  $\alpha = \gamma = 90.0^{\circ}$ ,  $\beta = 96.48(4)$ ; Z = 4.

Bei Versuchen zur Synthese von ionischen platin-organischen Verbindungen mit dem Bis[ $\eta^2$ -biphenyl-2,2'-diyl]platinat(II)-Anion [1,2] isolierten wir aus der Reaktion von *cis*-Dichloro-bis(tetrahydrothiophen)platin(II) mit 2,2'-Dilithio-4,4'-bis(trifluormethyl)biphenyl eine Verbindung, der nach Ausweis des <sup>1</sup>H-NMR-, IR- und Massenspektrums die Konstitution *cis*-Bis(tetrahydrothiophen)-bis{ $\eta^2$ -[4,4'-bis(trifluormethyl)biphenyl-2,2'-diyl]}platin(IV) (1) mit sechsfach koordiniertem formal vierwertigem Platin zugeordnet wurde [2]. Diese Struktur war angesichts der Synthesebedingungen unerwartet; insbesondere war der in dem reduktiven Reaktionsmedium beobachtete Wechsel der (formalen) oxidativen Wertigkeit des Platin von + II nach + IV überraschend und ungeklärt. Daher haben wir zur Sicherung der spektroskopisch begründeten Konstitution von 1 eine Röntgen-Strukturanalyse durchgeführt.

# Kristall- und Molekülstruktur von 1

1 kristallisiert in der Raumgruppe Cc mit den Gitterkonstanten a = 17.333(6), b = 16.072(5), c = 12.354(4) Å;  $\alpha = \gamma = 90.0^{\circ}$ ,  $\beta = 96.48(4)^{\circ}$  und vier Formelein-

0022-328X/91/\$03.50 © 1991 - Elsevier Sequoia S.A.



heiten in der Elementarzelle (Z = 4); die vier jeweils chiralen Moleküle sind in Form von zwei Enantiomerenpaaren inversionssymmetrisch angeordnet, daher ist der Kristall achiral.

Figur 1 zeigt eine Projektion der Elementarzelle auf die a,c-Ebene und Fig. 2 die Molekülstruktur von 1 mit der (kristallographischen) Atomnumerierung. In der Tabelle 1 sind die Atomkoordinaten mit den Temperaturfaktoren, in der Tabelle 2 die innermolekularen Atomabstände und in der Tabelle 3 schliesslich die Bindungswinkel zusammengefasst.

## Diskussion der Struktur

Der Mittelwert der Bindungslängen der vier Platin-Kohlenstoff-Bindungen Pt(1)-C(10) (1.982 Å), Pt(1)-C(20) (2.063 Å), Pt(1)-C(30) (2.057 Å) und Pt(1)-C(40)



Fig. 1. Elementarzelle von 1.



Fig. 2. Struktur des Moleküls 1 mit Atomnumerierung.

(2.155 Å) stimmt zwar mit 2.06 Å im Rahmen der Messgenauigkeit mit den in anderen Arvl-Platin(IV)-Verbindungen gemessenen Platin-Kohlenstoff-Bindungslängen überein [3-6]. Jedoch zeigen die beiden jeweils von jedem Biphenyl-2,2'divl-Liganden zum Platin ausgebildeten Kohlenstoff-Platin-Bindungslängen auffallende Differenzen in der Grössenordnung von fast 0.1 Å (1.982/2.063; 2.057/2.155 Å). Dabei sind die Bindungen mit den kürzeren Abständen in diesen beiden Wertepaaren [Pt(1)-C(10), Pt(1)-C(30)] jeweils trans-ständig zu den beiden Tetrahydrothiophen-Liganden orientiert; die beiden längeren Bindungsabstände [Pt(1)-C(20), Pt(1)-C(40)] sind daher zweifelsfrei durch den-im Vergleich zum Schwefel -erheblich stärkeren trans-labilisierenden Effekt der jeweils gegenüberliegenden Kohlenstoff-Platin-Bindungsbeziehungen [C(10)-Pt(1), C(30)-Pt(1)] verursacht. Dieser Einfluss äussert sich auch signifikant in den durch das Isotop <sup>195</sup> Pt (I = 1/2) verursachten Kopplungskonstanten des <sup>1</sup>H-NMR-Spektrums von 1 [2]. Allerdings darf bei diesem Vergleich der Bindungslängen nicht übersehen werden, dass der grössere Atomabstand des Paares [Pt(1)-C(10), Pt(1)-C(20)] mit 2.063 Å die kürzere Bindungslänge von 2.057 Å des Abstandspaares [Pt(1)-C(30), Pt(1)-C(40)] nur geringfügig übersteigt. Damit hat das einzelne in den Kristall eingebaute Molekül

Tabelle 1

Atomkoordinaten und Temperaturfaktoren von 1

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Atom              | x                        | У                        | 2                        | $\langle U \rangle^{a}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|--------------------------|--------------------------|-------------------------|
| S(1) $0.264(3)$ $0.1696(3)$ $0.9154(5)$ $0.039(2)$ C(2) $0.1942(15)$ $0.2017(14)$ $0.8039(21)$ $0.094(25)$ C(3) $0.1883(10)$ $0.1356(15)$ $0.7171(28)$ $0.166(72)$ C(5) $0.3052(8)$ $0.0922(10)$ $0.8335(19)$ $0.047(17)$ S(2) $0.4513(3)$ $0.1675(3)$ $1.0408(5)$ $0.046(5)$ C(6) $0.5210(9)$ $0.1466(17)$ $1.2437(18)$ $0.136(37)$ C(7) $0.5029(19)$ $0.1466(17)$ $1.2437(18)$ $0.013(37)$ C(8) $0.4455(13)$ $0.016(16)$ $1.2414(21)$ $0.099(25)$ C(9) $0.4014(15)$ $0.0864(15)$ $1.1176(19)$ $0.091(26)$ C(10) $0.4265(9)$ $0.3675(12)$ $1.0338(14)$ $0.047(16)$ C(11) $0.4844(9)$ $0.4118(10)$ $0.9933(14)$ $0.033(15)$ C(12) $0.5254(11)$ $0.4746(12)$ $1.2079(19)$ $0.065(21)$ C(13) $0.5173(13)$ $0.5594(15)$ $1.1550(20)$ $0.061(18)$ C(14) $0.4556(13)$ $0.4564(12)$ $1.2079(19)$ $0.065(21)$ C(15) $0.4157(6)$ $0.3933(10)$ $1.1508(12)$ $0.025(13)$ C(20) $0.3189(11)$ $0.2808(9)$ $1.1558(23)$ $0.050(17)$ C(23) $0.2917(12)$ $0.302(13)$ $1.3487(16)$ $0.350(17)$ C(24) $0.2658(10)$ $0.2327(10)$ $1.1823(17)$ $0.032(12)$ C(24) $0.2658(10)$ $0.2327(10)$ $1.1823(17)$ $0.038(15)$ C(33) $0.2068(11)$ $0.497$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pt(1)             | 0.3585(0)                | 0.2769(0)                | 0.9740(0)                | 0.026(0)                |
| $\begin{array}{ccccc} (2) & 0.1942(15) & 0.2017(14) & 0.8039(21) & 0.094(25) \\ (C3) & 0.1883(10) & 0.1356(15) & 0.7172(19) & 0.066(16) \\ (C4) & 0.2656(22) & 0.1090(34) & 0.7171(28) & 0.146(72) \\ (C5) & 0.3052(8) & 0.0922(10) & 0.8335(19) & 0.047(17) \\ (S2) & 0.4513(3) & 0.1675(3) & 1.0408(5) & 0.048(18) \\ (C7) & 0.5029(19) & 0.2660(12) & 1.1554(18) & 0.048(18) \\ (C7) & 0.5029(19) & 0.1466(17) & 1.2487(18) & 0.136(37) \\ (C8) & 0.4455(13) & 0.1018(16) & 1.2414(21) & 0.099(25) \\ (C10) & 0.4265(9) & 0.3675(12) & 1.0381(4) & 0.047(16) \\ (C111) & 0.4844(9) & 0.4118(10) & 0.9939(14) & 0.047(16) \\ (C12) & 0.5245(11) & 0.4746(12) & 1.0404(16) & 0.045(15) \\ (C13) & 0.5173(13) & 0.5054(15) & 1.1550(20) & 0.061(18) \\ (C14) & 0.4556(13) & 0.4564(12) & 1.2079(19) & 0.065(21) \\ (C15) & 0.4157(6) & 0.3933(10) & 1.1508(12) & 0.025(13) \\ (C22) & 0.348(10) & 0.3340(12) & 1.2042(18) & 0.056(20) \\ (C22) & 0.348(10) & 0.3340(12) & 1.2042(18) & 0.056(17) \\ (C23) & 0.2917(12) & 0.3012(13) & 1.3489(16) & 0.036(12) \\ (C44) & 0.2457(15) & 0.2393(17) & 1.2889(25) & 0.051(20) \\ (C33) & 0.2088(9) & 0.3715(7) & 0.9088(13) & 0.019(12) \\ (C33) & 0.2088(11) & 0.4397(12) & 0.058(13) & 0.036(12) \\ (C33) & 0.2088(11) & 0.4397(12) & 0.083(13) & 0.019(12) \\ (C33) & 0.2088(11) & 0.437(12) & 0.038(13) & 0.019(12) \\ (C33) & 0.2088(11) & 0.437(10) & 0.9058(13) & 0.019(13) \\ (C33) & 0.2068(11) & 0.4977(12) & 0.038(13) & 0.019(13) \\ (C33) & 0.2068(11) & 0.4977(12) & 0.038(15) & 0.038(16) \\ (C44) & 0.3737(11) & 0.347(11) & 0.6728(20) & 0.026(12) \\ (C44) & 0.3797(11) & 0.347(11) & 0.6728(21) & 0.038(15) \\ (C44) & 0.3797(11) & 0.347(11) & 0.6728(21) & 0.038(13) \\ (C44) & 0.3797(11) & 0.347(11) & 0.6728(21) & 0.038(15) \\ (C44) & 0.3797(11) & 0.347(11) & 0.6728(21) & 0.059(13) \\ (C44) & 0.3797(11) & 0.347(11) & 0.6728(21) & 0.059(13) \\ (C44) & 0.3797(14) & 0.579(6) & 0.183(17) & 0.17(23) \\ (C44) & 0.3797(13) & 0.185(17) & 0.17(23) \\ (C44) & 0.3797(13) & 0.185(17) & 0.048(13) & 0.136(23) \\ (C44) & 0.3797(14) & 0.5769(1) & 0.188(38) \\ (C44) & 0.3797(11) & 0.569(9) & 1.0048$ | S(1)              | 0.2641(3)                | 0.1696(3)                | 0.9154(5)                | 0.039(5)                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(2)              | 0.1942(15)               | 0.2017(14)               | 0.8039(21)               | 0.094(25)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(3)              | 0.1883(10)               | 0.1356(15)               | 0.7172(19)               | 0.066(16)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(4)              | 0.2656(22)               | 0.1090(34)               | 0.7171(28)               | 0.146(72)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(5)              | 0.3052(8)                | 0.0922(10)               | 0.8335(19)               | 0.047(17)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S(2)              | 0.4513(3)                | 0.1675(3)                | 1.0408(5)                | 0.046(5)                |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(6)              | 0.5210(9)                | 0.2060(12)               | 1.1554(18)               | 0.048(18)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(7)              | 0.5029(19)               | 0.1466(17)               | 1.2487(18)               | 0.136(37)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(8)              | 0.4455(13)               | 0.1018(16)               | 1.2414(21)               | 0.099(25)               |
| $\begin{array}{cccccc} C(10) & 0.4265(9) & 0.3675(12) & 1.0383(14) & 0.047(16) \\ C(11) & 0.4844(9) & 0.4118(10) & 0.9939(14) & 0.033(15) \\ C(12) & 0.5245(11) & 0.4746(12) & 1.0404(16) & 0.045(15) \\ C(13) & 0.5173(13) & 0.5054(15) & 1.1550(20) & 0.061(18) \\ C(14) & 0.4556(13) & 0.4564(12) & 1.2079(19) & 0.065(21) \\ C(15) & 0.4157(6) & 0.3933(10) & 1.1598(12) & 0.025(13) \\ C(20) & 0.3189(11) & 0.2808(9) & 1.1252(21) & 0.021(12) \\ C(21) & 0.3561(12) & 0.3407(12) & 1.2042(18) & 0.056(20) \\ C(22) & 0.3448(10) & 0.3540(12) & 1.3150(15) & 0.050(17) \\ C(23) & 0.2917(12) & 0.3012(13) & 1.3489(16) & 0.036(12) \\ C(24) & 0.2457(15) & 0.2393(17) & 1.2889(25) & 0.051(20) \\ C(25) & 0.2658(10) & 0.2327(10) & 1.1823(17) & 0.038(15) \\ C(30) & 0.2880(9) & 0.3715(7) & 0.9089(13) & 0.0194(12) \\ C(31) & 0.2349(11) & 0.4139(10) & 0.9669(17) & 0.038(15) \\ C(32) & 0.1916(9) & 0.4802(10) & 0.9052(18) & 0.029(13) \\ C(33) & 0.2058(11) & 0.4977(12) & 0.8031(17) & 0.031(11) \\ C(34) & 0.2574(8) & 0.4587(10) & 0.7534(10) & 0.029(13) \\ C(41) & 0.4538(17) & 0.2382(12) & 0.8138(16) & 0.047(19) \\ C(41) & 0.4538(17) & 0.2382(12) & 0.8138(16) & 0.047(19) \\ C(41) & 0.4538(17) & 0.2382(12) & 0.8138(16) & 0.053(23) \\ C(42) & 0.4608(13) & 0.2375(14) & 0.7868(23) & 0.053(23) \\ C(42) & 0.4608(13) & 0.2375(14) & 0.7868(23) & 0.053(23) \\ C(44) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ C(45) & 0.3579(6) & 0.3430(9) & 0.7669(12) & 0.016(12) \\ C(12A) & 0.588(5) & 0.4892(6) & 0.896(8) & 0.050(8) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9833(17) & 0.107(21) \\ F(12A) & 0.598(5) & 0.4892(6) & 0.896(8) & 0.050(8) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9833(17) & 0.107(21) \\ F(12A) & 0.1537(21) & 0.1337(15) & 1.2649(14) & 0.173(32) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24A) & 0.1602(14) & 0.514(12) & 0.058(13) & 0.118(20) \\ F(32B) & 0.1145(11) & 0.501(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.501(12) & 1.0513(17) & 0.127(23) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) $  | C(9)              | 0.4014(15)               | 0.0864(15)               | 1.1176(19)               | 0.091(26)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(10)             | 0.4265(9)                | 0.3675(12)               | 1.0383(14)               | 0.047(16)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(11)             | 0.4844(9)                | 0.4118(10)               | 0.9939(14)               | 0.033(15)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(12)             | 0.5245(11)               | 0.4746(12)               | 1.0404(16)               | 0.045(15)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(13)             | 0.5173(13)               | 0.5054(15)               | 1.1550(20)               | 0.061(18)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(14)             | 0.4556(13)               | 0.4564(12)               | 1.2079(19)               | 0.065(21)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(15)             | 0.4157(6)                | 0.3933(10)               | 1.1508(12)               | 0.025(13)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(20)             | 0.3189(11)               | 0 2808(9)                | 1 1252(21)               | 0.021(12)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(21)             | 0.3561(12)               | 0.3407(12)               | 1.2042(18)               | 0.056(20)               |
| $\begin{array}{ccccc} (23) & 0.217(12) & 0.3012(13) & 1.3489(16) & 0.036(12) \\ (24) & 0.2457(15) & 0.2393(17) & 1.2889(25) & 0.051(20) \\ (25) & 0.2658(10) & 0.2327(10) & 1.1823(17) & 0.023(12) \\ (30) & 0.2880(9) & 0.3715(7) & 0.9089(13) & 0.019(12) \\ (31) & 0.2349(11) & 0.4139(10) & 0.9669(17) & 0.038(15) \\ (232) & 0.1916(9) & 0.4802(10) & 0.9052(18) & 0.029(13) \\ (233) & 0.2068(11) & 0.4977(12) & 0.8031(17) & 0.031(11) \\ (234) & 0.2574(8) & 0.4587(10) & 0.7534(10) & 0.029(13) \\ (235) & 0.3011(12) & 0.3927(10) & 0.8038(16) & 0.047(19) \\ (240) & 0.3969(15) & 0.2832(12) & 0.8143(27) & 0.038(19) \\ (241) & 0.4538(17) & 0.2286(14) & 0.7886(23) & 0.053(23) \\ (242) & 0.4608(13) & 0.2375(14) & 0.6475(15) & 0.037(16) \\ (244) & 0.377(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ (244) & 0.377(11) & 0.3471(11) & 0.9896(13) & 0.026(10) \\ (212A) & 0.5856(9) & 0.5259(11) & 0.9835(17) & 0.107(21) \\ (212A) & 0.5856(9) & 0.5259(11) & 0.9835(17) & 0.107(21) \\ (212A) & 0.5856(9) & 0.5259(11) & 0.9835(17) & 0.107(21) \\ (212A) & 0.558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ (224A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ (244A) & 0.2026(11) & 0.1771(11) & 1.307(12) & 0.045(15) \\ (244A) & 0.2026(11) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ (224A) & 0.1525(12) & 0.2129(100) & 1.3902(24) & 0.175(36) \\ (242A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.1360(14) & 0.53$  | C(22)             | 0.3448(10)               | 0 3540(12)               | 1 3150(15)               | 0.050(17)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(23)             | 0.2917(12)               | 0.3012(13)               | 1 3489(16)               | 0.036(17)               |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(24)             | 0.2457(15)               | 0.3012(13)<br>0.2393(17) | 1 2889(25)               | 0.050(12)               |
| $\begin{array}{c} (23) & 0.288(17) & 0.327(18) & 1.1025(17) & 0.025(12) \\ (23) & 0.288(19) & 0.3715(7) & 0.9089(13) & 0.019(12) \\ (23) & 0.2349(11) & 0.4139(10) & 0.9669(17) & 0.038(15) \\ (23) & 0.2068(11) & 0.4977(12) & 0.8031(17) & 0.031(11) \\ (234) & 0.2574(8) & 0.4587(10) & 0.7534(10) & 0.029(13) \\ (235) & 0.3011(12) & 0.3927(10) & 0.8038(16) & 0.047(19) \\ (240) & 0.3969(15) & 0.2832(12) & 0.8143(27) & 0.038(19) \\ (241) & 0.4538(17) & 0.2286(14) & 0.7886(23) & 0.053(23) \\ (242) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ (243) & 0.4259(14) & 0.2966(12) & 0.5937(20) & 0.059(18) \\ (244) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ (244) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ (242) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ (212A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ (212A) & 0.5988(5) & 0.4892(6) & 0.8966(8) & 0.050(8) \\ (212B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ (212B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ (24A) & 0.2026(11) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ (24A) & 0.2026(11) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ (24A) & 0.2026(11) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ (24A) & 0.165(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ (24A) & 0.165(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ (24A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ (232A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.186(20) \\ (242A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ (242A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ (242A) & 0.5309(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ (242A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ (242A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ (242A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.187(34) \\ (242A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.18(20) \\ (242A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ (242B) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.186(18) \\ (242B) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ (242B) & 0.5809(6) & 0.1657(11) & 0.6824(12) & $  | C(25)             | 0.2658(10)               | 0.2327(10)               | 1.2009(25)<br>1.1823(17) | 0.031(20)               |
| $\begin{array}{c} C(3) & 0.2349(1) & 0.3717(1) & 0.9669(17) & 0.038(15) \\ C(31) & 0.2349(11) & 0.4139(10) & 0.9669(17) & 0.038(15) \\ C(32) & 0.1916(9) & 0.4802(10) & 0.9052(18) & 0.029(13) \\ C(33) & 0.2068(11) & 0.4977(12) & 0.8031(17) & 0.031(11) \\ C(34) & 0.2574(8) & 0.4587(10) & 0.7534(10) & 0.029(13) \\ C(35) & 0.3011(12) & 0.3927(10) & 0.8038(16) & 0.047(19) \\ C(40) & 0.3969(15) & 0.2832(12) & 0.8143(27) & 0.038(19) \\ C(41) & 0.4538(17) & 0.2286(14) & 0.7886(23) & 0.053(23) \\ C(42) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ C(43) & 0.4259(14) & 0.2966(12) & 0.5937(20) & 0.059(18) \\ C(44) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ C(45) & 0.3579(6) & 0.3430(9) & 0.7569(12) & 0.016(12) \\ C(12A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ C(24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32B) & 0.1145(11) & 0.105(9) & 0.6190(24) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.075(26) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.530(13) & 0.182(20) \\ \end{array}$                                                                                                                                            | C(30)             | 0.2880(9)                | 0.3715(7)                | 0.9089(13)               | 0.029(12)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(31)             | 0.2349(11)               | 0.4139(10)               | 0.9669(17)               | 0.019(12)               |
| $\begin{array}{ccccccc} (2) & 0.1716(7) & 0.102(16) & 0.103(16) & 0.031(17) & 0.031(17) \\ (2) & 0.2574(8) & 0.4977(12) & 0.8031(17) & 0.031(11) \\ (2) & 0.3969(15) & 0.2832(12) & 0.8143(27) & 0.038(19) \\ (2) & 0.3969(15) & 0.2832(12) & 0.8143(27) & 0.038(19) \\ (2) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ (2) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ (2) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ (2) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.059(18) \\ (2) & 0.4597(14) & 0.2966(12) & 0.597(20) & 0.059(18) \\ (2) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ (2) & 0.3579(6) & 0.3430(9) & 0.7569(12) & 0.016(12) \\ (2) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12A) & 0.5988(5) & 0.4892(6) & 0.8966(8) & 0.050(8) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ (2) & (24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ (2) & (32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6324(12) & 0.106(18) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6320(13) & 0.183(34) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6324(12) & 0.106(18) \\ F(42B) & 0.5809(6) & 0.1657(11) & 0.6324(12) & 0.106(18) \\ F(42B) & 0.5809(6) & 0.1657(11) & 0.6324(12) & 0.106(18) \\ F(42B) & 0.5809(6) & 0.1657(11) & 0.6324(12) & 0.106(18) \\ F(42B) & 0.5809(6) & 0.1657(11) & 0.6324(12) & 0.106(18) \\ F(42B) & 0.5809(6) & 0.1657(11) & 0.6320(13) & 0.183(44) \\ \end{array}$                                                                                    | C(32)             | 0.1916(9)                | 0.4802(10)               | 0.9057(18)               | 0.029(13)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(33)             | 0.2068(11)               | 0.4977(12)               | 0.8031(17)               | 0.031(11)               |
| $\begin{array}{cccccc} C(35) & 0.3011(12) & 0.3927(10) & 0.8038(16) & 0.047(19) \\ C(40) & 0.3969(15) & 0.2832(12) & 0.8143(27) & 0.038(19) \\ C(41) & 0.4538(17) & 0.2286(14) & 0.7886(23) & 0.053(23) \\ C(42) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ C(43) & 0.4259(14) & 0.2966(12) & 0.5937(20) & 0.059(18) \\ C(44) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ C(45) & 0.3579(6) & 0.3430(9) & 0.7569(12) & 0.016(12) \\ C(12A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ C(24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ C(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32B) & 0.1145(11) & 0.5015(12) & 0.048(14) & 0.091(15) \\ C(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.530(13) & 0.182(34) \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C(34)             | 0.2574(8)                | 0.4587(10)               | 0.7534(10)               | 0.029(13)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(35)             | 0.3011(12)               | 0.3927(10)               | 0.8038(16)               | 0.047(19)               |
| $\begin{array}{c} C(41) & 0.4538(17) & 0.2286(14) & 0.7886(23) & 0.053(23) \\ C(42) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ C(43) & 0.4259(14) & 0.2966(12) & 0.5937(20) & 0.059(18) \\ C(44) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ C(45) & 0.3579(6) & 0.3430(9) & 0.7569(12) & 0.016(12) \\ C(12A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12A) & 0.5988(5) & 0.4892(6) & 0.8966(8) & 0.050(8) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ C(24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ C(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.5015(9) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(24) \\ F(42B) & 0.5420(17) & $  | C(40)             | 0.3969(15)               | 0.2927(10)<br>0.2832(12) | 0.8143(27)               | 0.038(19)               |
| $\begin{array}{ccccc} (42) & 0.4608(13) & 0.2375(14) & 0.6728(20) & 0.026(12) \\ C(43) & 0.4259(14) & 0.2966(12) & 0.5937(20) & 0.059(18) \\ C(44) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ C(45) & 0.3579(6) & 0.3430(9) & 0.7569(12) & 0.016(12) \\ C(12A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12A) & 0.5988(5) & 0.4892(6) & 0.8966(8) & 0.050(8) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ C(24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ C(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.183(34) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.183(34) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.183(34) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.183(34) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.183(14) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.183(14) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.183(14) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.183(14) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) \\ F(42B) $ | C(41)             | 0.4538(17)               | 0.2286(14)               | 0.0145(27)<br>0.7886(23) | 0.053(23)               |
| $\begin{array}{ccccc} (43) & 0.4259(14) & 0.2966(12) & 0.5937(20) & 0.059(18) \\ C(44) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ C(45) & 0.3579(6) & 0.3430(9) & 0.7569(12) & 0.016(12) \\ C(12A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12A) & 0.5988(5) & 0.4892(6) & 0.8966(8) & 0.050(8) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ C(24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ C(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.183(34) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(42)             | 0.4608(13)               | 0.2375(14)               | 0.6728(20)               | 0.026(12)               |
| $\begin{array}{c} C(43) & 0.425(14) & 0.3737(11) & 0.3471(11) & 0.6375(15) & 0.037(16) \\ C(44) & 0.3737(11) & 0.3471(11) & 0.6475(15) & 0.037(16) \\ C(45) & 0.3579(6) & 0.3430(9) & 0.7569(12) & 0.016(12) \\ C(12A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12A) & 0.5988(5) & 0.4892(6) & 0.8966(8) & 0.050(8) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ C(24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ C(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32C) & 0.1629(10) & 0.5965(9) & 1.0048(14) & 0.091(15) \\ C(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.4891(11) & 0.1055(9) & 0.6190(24) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(34) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C(42)             | 0.4050(15)               | 0.2975(17)               | 0.5937(20)               | 0.050(12)               |
| C(45) $0.3579(6)$ $0.3430(9)$ $0.7569(12)$ $0.016(12)$ $C(45)$ $0.3579(6)$ $0.3430(9)$ $0.7569(12)$ $0.016(12)$ $C(12A)$ $0.5856(9)$ $0.5259(11)$ $0.9896(13)$ $0.026(10)$ $F(12A)$ $0.5988(5)$ $0.4892(6)$ $0.8966(8)$ $0.050(8)$ $F(12B)$ $0.5700(10)$ $0.6054(7)$ $0.9835(17)$ $0.107(21)$ $F(12C)$ $0.6558(6)$ $0.5183(10)$ $1.0456(11)$ $0.088(13)$ $C(24A)$ $0.2026(11)$ $0.1771(11)$ $1.3307(12)$ $0.045(15)$ $F(24A)$ $0.1605(15)$ $0.1317(15)$ $1.2649(14)$ $0.173(32)$ $F(24B)$ $0.1525(12)$ $0.2129(10)$ $1.3902(24)$ $0.175(36)$ $F(24C)$ $0.2341(10)$ $0.1302(12)$ $1.4080(13)$ $0.136(21)$ $C(32A)$ $0.0732(8)$ $0.5464(12)$ $0.8960(13)$ $0.118(20)$ $F(32B)$ $0.1145(11)$ $0.5965(9)$ $1.0048(14)$ $0.091(15)$ $C(42A)$ $0.5232(13)$ $0.1836(17)$ $0.6241(22)$ $0.075(26)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(43)             | 0.4239(14)<br>0.3737(11) | 0.2900(12)<br>0.3471(11) | 0.5757(20)               | 0.037(16)               |
| $\begin{array}{cccc} (12) & 0.5456(9) & 0.5456(7) & 0.7556(12) & 0.6161(12) \\ C(12A) & 0.5856(9) & 0.5259(11) & 0.9896(13) & 0.026(10) \\ F(12B) & 0.5700(10) & 0.6054(7) & 0.9835(17) & 0.107(21) \\ F(12C) & 0.6558(6) & 0.5183(10) & 1.0456(11) & 0.088(13) \\ C(24A) & 0.2026(11) & 0.1771(11) & 1.3307(12) & 0.045(15) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ C(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32C) & 0.1629(10) & 0.5965(9) & 1.0048(14) & 0.091(15) \\ C(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.4891(11) & 0.1055(9) & 0.6190(24) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.187(34) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(45)             | 0.3579(6)                | 0.3430(9)                | 0.7569(12)               | 0.037(10)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C(12A)            | 0.5856(9)                | 0.5259(11)               | 0.9806(13)               | 0.010(12)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(12A)            | 0.5988(5)                | 0.4892(6)                | 0.8966(8)                | 0.050(8)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(12R)            | 0.5700(10)               | 0.4052(0)                | 0.9835(17)               | 0.050(0)                |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(12C)            | 0.558(6)                 | 0.5054(7)                | 1.0456(11)               | 0.107(21)               |
| $\begin{array}{cccc} (2(37)) & 0.120(11) & 0.171(11) & 1.550(12) & 0.051(12) \\ F(24A) & 0.1605(15) & 0.1317(15) & 1.2649(14) & 0.173(32) \\ F(24B) & 0.1525(12) & 0.2129(10) & 1.3902(24) & 0.175(36) \\ F(24C) & 0.2341(10) & 0.1302(12) & 1.4080(13) & 0.136(21) \\ C(32A) & 0.1360(14) & 0.5214(16) & 0.9516(23) & 0.071(24) \\ F(32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32C) & 0.1629(10) & 0.5965(9) & 1.0048(14) & 0.091(15) \\ C(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.4891(11) & 0.1055(9) & 0.6190(24) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(34) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(24A)            | 0.0000(0)                | 0.3103(10)<br>0.1771(11) | 1.3307(12)               | 0.045(15)               |
| (24R) $(100(15)$ $(101(15)$ $(1209(14)$ $(117)(22)$ $F(24B)$ $0.1525(12)$ $0.2129(10)$ $1.3902(24)$ $0.175(36)$ $F(24C)$ $0.2341(10)$ $0.1302(12)$ $1.4080(13)$ $0.136(21)$ $C(32A)$ $0.1360(14)$ $0.5214(16)$ $0.9516(23)$ $0.071(24)$ $F(32A)$ $0.0732(8)$ $0.5464(12)$ $0.8960(13)$ $0.118(20)$ $F(32B)$ $0.1145(11)$ $0.5011(12)$ $1.0513(17)$ $0.127(23)$ $F(32C)$ $0.1629(10)$ $0.5965(9)$ $1.0048(14)$ $0.091(15)$ $C(42A)$ $0.5232(13)$ $0.1836(17)$ $0.6241(22)$ $0.075(26)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42A)$ $0.5420(17)$ $0.2035(14)$ $0.5350(13)$ $0.187(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E(24A)            | 0.1605(15)               | 0.1317(15)               | 1.3507(12)<br>1.2649(14) | 0.045(15)<br>0.173(32)  |
| (1426) $(1426)$ $(1426)$ $(1426)$ $(1426)$ $(1426)$ $(1426)$ $(1426)$ $F(24C)$ $0.2341(10)$ $0.1302(12)$ $1.4080(13)$ $0.136(21)$ $C(32A)$ $0.1360(14)$ $0.5214(16)$ $0.9516(23)$ $0.071(24)$ $F(32A)$ $0.0732(8)$ $0.5464(12)$ $0.8960(13)$ $0.118(20)$ $F(32B)$ $0.1145(11)$ $0.5011(12)$ $1.0513(17)$ $0.127(23)$ $F(32C)$ $0.1629(10)$ $0.5965(9)$ $1.0048(14)$ $0.091(15)$ $C(42A)$ $0.5232(13)$ $0.1836(17)$ $0.6241(22)$ $0.075(26)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42A)$ $0.5809(6)$ $0.1657(14)$ $0.5350(13)$ $0.183(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F(24R)            | 0.1525(12)               | 0.1317(13)<br>0.2129(10) | 1 3902(24)               | 0.175(36)               |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(24C)            | 0.1323(12)<br>0.2341(10) | 0.2129(10)<br>0.1302(12) | 1.002(24)<br>1.4080(13)  | 0.136(21)               |
| $\begin{array}{cccc} (2(31)) & 0.136(14) & 0.521(16) & 0.5516(25) & 0.011(24) \\ F(32A) & 0.0732(8) & 0.5464(12) & 0.8960(13) & 0.118(20) \\ F(32B) & 0.1145(11) & 0.5011(12) & 1.0513(17) & 0.127(23) \\ F(32C) & 0.1629(10) & 0.5965(9) & 1.0048(14) & 0.091(15) \\ C(42A) & 0.5232(13) & 0.1836(17) & 0.6241(22) & 0.075(26) \\ F(42A) & 0.4891(11) & 0.1055(9) & 0.6190(24) & 0.188(38) \\ F(42A) & 0.5809(6) & 0.1657(11) & 0.6824(12) & 0.106(18) \\ F(42B) & 0.5420(17) & 0.2035(14) & 0.5350(13) & 0.187(34) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $C(32\mathbf{A})$ | 0.1360(14)               | 0.5214(16)               | 0.9516(23)               | 0.071(24)               |
| (1217) $(0.513(17)$ $(0.513(17)$ $(0.117(12)$ $F(32B)$ $0.1145(11)$ $0.5011(12)$ $1.0513(17)$ $0.127(23)$ $F(32C)$ $0.1629(10)$ $0.5965(9)$ $1.0048(14)$ $0.091(15)$ $C(42A)$ $0.5232(13)$ $0.1836(17)$ $0.6241(22)$ $0.075(26)$ $F(42A)$ $0.4891(11)$ $0.1055(9)$ $0.6190(24)$ $0.188(38)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42B)$ $0.5420(17)$ $0.2035(14)$ $0.5350(13)$ $0.187(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E(32\Delta)$     | 0.0732(8)                | 0.5214(10)<br>0.5464(12) | 0.8960(13)               | 0.071(24)<br>0.118(20)  |
| (12D) $(117)$ $(10511(12)$ $(10511(12)$ $(1071)$ $F(32C)$ $0.1629(10)$ $0.5965(9)$ $1.0048(14)$ $0.091(15)$ $C(42A)$ $0.5232(13)$ $0.1836(17)$ $0.6241(22)$ $0.075(26)$ $F(42A)$ $0.4891(11)$ $0.1055(9)$ $0.6190(24)$ $0.188(38)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42B)$ $0.5420(17)$ $0.2035(14)$ $0.5350(13)$ $0.187(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F(32R)            | 0.1145(11)               | 0.5404(12)<br>0.5011(12) | 1.0513(17)               | 0.110(20)<br>0.127(23)  |
| C(42A) $0.5232(13)$ $0.1836(17)$ $0.6241(22)$ $0.075(26)$ $F(42A)$ $0.4891(11)$ $0.1055(9)$ $0.6190(24)$ $0.188(38)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42B)$ $0.5420(17)$ $0.2035(14)$ $0.5350(13)$ $0.187(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F(32C)            | 0.1629(10)               | 0.5965(9)                | 1 0048(14)               | 0.091(15)               |
| F(42A) $0.4891(11)$ $0.1055(9)$ $0.6190(24)$ $0.188(38)$ $F(42A)$ $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42B)$ $0.5420(17)$ $0.2035(14)$ $0.5350(13)$ $0.182(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(42A)            | 0 5232(13)               | 0 1836(17)               | 0.6241(22)               | 0.075(26)               |
| F(42A) $0.5809(6)$ $0.1657(11)$ $0.6824(12)$ $0.106(18)$ $F(42B)$ $0.5420(17)$ $0.2035(14)$ $0.5350(13)$ $0.182(34)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(42A)            | 0.3232(13)               | 0.1055(9)                | 0 6190(24)               | 0.188(38)               |
| F(42B) = 0.5420(17) = 0.2035(14) = 0.5024(12) = 0.100(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F(42A)            | 0.5809(6)                | 0 1657(11)               | 0.6824(12)               | 0.106(18)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F(42B)            | 0.5420(17)               | 0.2035(14)               | 0.5350(13)               | 0.182(34)               |

 $\frac{1}{a} U = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* a_i a_j.$ 

| S(1)-Pt(1)    | 2.430(5)  | S(2)-Pt(1)      | 2.463(6)                      |
|---------------|-----------|-----------------|-------------------------------|
| C(40) - Pt(1) | 2.155(32) | C(20) - Pt(1)   | 2.063(25)                     |
| C(30) - Pt(1) | 2.057(13) | C(10) - Pt(1)   | 1.982(19)                     |
| C(2)-S(1)     | 1.804(23) | C(5) - S(1)     | 1.800(20)                     |
| C(6) - S(2)   | 1.860(23) | C(9) - S(2)     | 1.880(21)                     |
| C(12)A-F(12)A | 1.335(20) | C(45)-C(40)     | 1.332(31)                     |
| C(32)A-F(32)B | 1.366(30) | C(35)-C(45)     | 1.439(23)                     |
| C(41)-C(40)   | 1.384(33) | C(20)-C(21)     | 1.468(30)                     |
| C(44)-C(45)   | 1.411(25) | C(22) - C(21)   | 1.419(29)                     |
| C(15)-C(21)   | 1.540(23) | C(30)-C(35)     | 1.386(26)                     |
| C(32)A-F(32)A | 1.284(30) | C(12)A - F(12)B | 1.306(23)                     |
| C(34)-C(35)   | 1.407(25) | C(24)-C(25)     | 1.403(36)                     |
| C(25)-C(20)   | 1.444(24) | C(42)-C(41)     | 1.457(37)C(10)-C(15)1.482(23) |
| C(12)A-F(12)C | 1.336(20) | C(31)-C(30)     | 1.404(25)                     |
| C(14)-C(15)   | 1.375(27) | C(33)-C(34)     | 1.290(25)                     |
| C(11)-C(10)   | 1.392(23) | C(32)-C(33)     | 1.347(30)                     |
| C(13)-C(14)   | 1.533(30) | C(13)-C(12)     | 1.518(30)                     |
| C(11)-C(12)   | 1.319(26) | C(23)-C(24)     | 1.429(37)                     |
| C(12)A-C(12)  | 1.532(21) | C(31)-C(32)     | 1.468(26)                     |
| C(24)A-C(24)  | 1.382(30) | C(43)-C(44)     | 1.433(31)                     |
| C(32)A-C(32)  | 1.349(31) | C(43)-C(42)     | 1.446(36)                     |
| C(23)-C(22)   | 1.352(29) | F(42)B-C(42)A   | 1.224(27)                     |
| C(42)A-C(42)  | 1.559(27) | C(24)A-F(24)A   | 1.262(25)                     |
| F(42)A-C(42)A | 1.200(25) | F(24)C-C(24)A   | 1.288(21)                     |
| F(42)A-C(42)A | 1.386(32) | C(7)-C(6)       | 1.556(32)                     |
| F(24)B-C(24)A | 1.330(23) | C(8) - C(7)     | 1.225(36)                     |
| C(3) - C(2)   | 1.503(34) | C(4) - C(3)     | 1.405(42)                     |
| C(8)-C(9)     | 1.648(37) |                 | - ,                           |
| C(4)-C(5)     | 1.545(43) |                 |                               |

Tabelle 2 Intramolekulare Atomabstände (in Å) für 1 mit Standard-Abweichungen

nicht mehr die auf der Basis des NMR-Spektrums [2] ermittelte Symmetrie  $C_2$  des im indifferenten Lösungsmittel gelösten Einzelmoleküls. Wir vermuten daher, dass die aus den einander entsprechenden unterschiedlichen Platin-Kohlenstoff-Abständen abgeleitete reduzierte Symmetrie durch eine als Folge der Packung im Kristall resultierende Deformation verursacht wird. Die Anordnung der unmittelbar an das Platin gebundenen Koordinationspartner S(1), S(2), C(10), C(20), C(30) und C(40) weicht erwartungsgemäss als Konsequenz der durch das Biphenyl-System festgelegten Entfernungen zwischen C(10) und C(20) bzw. C(30) und C(40) beträchtlich von der für ein sechsfach ungehindert koordiniertes  $d^2sp^3$ -hybridisiertes Platin zu erwartenden Oktaeder-Symmetrie ab. Dies äussert sich deutlich in den Chelat-Bindungswinkeln C(10)-Pt(1)-C(20) (81.7°) und C(30)-Pt(1)-C(40) (80.7°); sie weichen stark von dem bei ungehindert oktaedrischer Koordination auftretenden Winkel (90°) ab.

### Experimentelles

Philips PW 1100 Vierkreisdiffraktometer; Mo- $K_{\alpha}$ -Strahlung, Graphit-Monochromator,  $\lambda = 0.7107$  Å;  $\theta - 2\theta$ -Abtastung; die Intensitäten dreier Standards änderten Tabelle 3

Bindungswinkel in 1 mit Standard-Abweichungen

| S(2)-Pt(1)-S(1)      | 89.2(1)         | C(40)-Pt(1)-S(1)     | 91.6(6)   |
|----------------------|-----------------|----------------------|-----------|
| C(40) - Pt(1) - S(2) | <b>94.7(</b> 7) | C(20) - Pt(1) - S(1) | 90.5(5)   |
| C(20)-Pt(1)-S(2)     | 89.4(6)         | C(20)-Pt(1)-C(40)    | 175.4(6)  |
| C(30)-Pt(1)-S(1)     | 93.3(5)         | C(30) - Pt(1) - S(2) | 174.9(5)  |
| C(30)-Pt(1)-C(40)    | 80.7(8)         | C(30)-Pt(1)-C(20)    | 95.1(7)   |
| C(10) - Pt(1) - S(1) | 172.1(5)        | C(10) - Pt(1) - S(2) | 93.1(5)   |
| C(10)-Pt(1)-C(40)    | 95.8(7)         | C(10)-Pt(1)-C(20)    | 81.9(7)   |
| C(10)-Pt(1)-C(30)    | 85.1(3)         | C(2)-S(1)-Pt(1)      | 113.4(8)  |
| C(5)-S(1)-Pt(1)      | 111.3(5)        | C(5)-S(1)-C(2)       | 92.4(12)  |
| C(6)-S(2)-Pt(1)      | 111.1(7)        | C(9)-S(2)-Pt(1)      | 110.1(9)  |
| C(9)-S(2)-C(6)       | 98.2(10)        | C(41)-C(40)-Pt(1)    | 118.8(21) |
| C(45)-C(40)-Pt(1)    | 109.3(18)       | C(35)C(45)C(40)      | 121.0(18) |
| C(41)-C(40)-C(45)    | 131.9(28)       | C(44)C(45)-C(35)     | 125.1(16) |
| C(44)-C(45)-C(40)    | 113.7(18)       | C(22)-C(21)-C(20)    | 129.9(19) |
| C(15)-C(21)-C(20)    | 109.9(17)       | C(30)-C(35)-C(45)    | 115.6(16) |
| C(22)-C(21)-C(15)    | 120.2(18)       | C(34)C(35)C(30)      | 117.6(16) |
| C(34)C(35)C(45)      | 126.8(17)       | C(25)-C(20)-Pt(1)    | 136.2(15) |
| C(21)-C(20)-Pt(1)    | 117.1(13)       | C(24)-C(25)-C(20)    | 131.1(19) |
| C(25)-C(20)-C(21)    | 106.4(19)       | C(14)-C(15)-C(21)    | 120.4(16) |
| C(42)-C(41)-C(40)    | 107.6(25)       | C(35)-C(30)-Pt(1)    | 113.2(12) |
| C(10)-C(15)-C(21)    | 114.3(14)       | C(31)-C(30)-C(35)    | 123.1(15) |
| C(14)-C(15)-C(10)    | 125.3(15)       | C(11)-C(10)-Pt(1)    | 129.8(14) |
| C(31)-C(30)-Pt(1)    | 123.6(13)       | C(33)-C(34)-C(35)    | 121.1(15) |
| C(15)-C(10)-Pt(1)    | 116.6(11)       | C(32)-C(33)-C(34)    | 124.1(17) |
| C(11)-C(10)-C(15)    | 113.5(16)       | C(12)A-C(12)-C(11)   | 126.0(16) |
| C(13)-C(14)-C(15)    | 119.6(20)       | C(23)-C(24)-C(25)    | 110.9(19) |
| C(13)-C(12)-C(11)    | 124.2(17)       | C(24)A-C(24)-C(23)   | 127.1(25) |
| C(12)A-C(12)-C(13)   | 109.8(17)       | C(32)A-C(32)-C(33)   | 121.4(21) |
| C(24)A-C(24)-C(25)   | 119.9(25)       | C(32)-C(31)-C(30)    | 114.4(17) |
| C(31)-C(32)-C(33)    | 119.7(18)       | C(43)-C(44)-C(45)    | 128.2(17) |
| C(32)A-C(32)-C(31)   | 118.9(22)       | C(23)-C(22)-C(21)    | 112.2(20) |
| C(12)-C(11)-C(10)    | 125.9(16)       | C(42)A-C(42)-C(41)   | 117.6(23) |
| C(12)-C(13)-C(14)    | 111.3(18)       | C(42)-C(43)-C(44)    | 107.3(20) |
| C(43)-C(42)-C(41)    | 130.8(20)       | F(42)B-C(42)A-C(42)  | 117.9(22) |
| C(42)A-C(42)-C(43)   | 111.1(20)       | F(42)A-C(42)A-C(42)  | 102.1(19) |
| F(42)A-C(42)A-C(42)  | 118.0(24)       | F(42)A-C(42)A-F(42)B | 110.6(28) |
| F(42)B-C(42)A-F(42)A | 108.3(23)       | F(12)C-C(12)A-F(12)A | 99.8(14)  |
| F(42)A-C(42)A-F(42)C | 97.6(23)        | C(12)-C(12)A-F(12)A  | 108.0(14) |
| F(12)B-C(12)A-F(12)A | 115.9(15)       | C(12)-C(12)A-F(12)C  | 111.7(16) |
| F(12)C-C(12)A-F(12)B | 106.9(15)       | F(32)A-C(32)A-F(32)B | 104.9(20) |
| C(12)-C(12)A-F(12)B  | 113.7(15)       | F(32)C-C(32)A-F(32)A | 101.2(22) |
| C(22)-C(23)-C(24)    | 129.4(20)       | C(32)-C(32)A-F(32)A  | 121.9(25) |
| F(32)C-C(32)A-F(32)B | 84.0(20)        | F(24)A-C(24)A-C(24)  | 118.4(18) |
| C(32)-C(32)A-F(32)B  | 123.2(25)       | F(24)B-C(24)A-F(24)A | 103.9(19) |
| C(32)-C(32)A-F(32)C  | 113.4(19)       | F(24)C-C(24)A-F(24)A | 107.7(19) |
| F(24)B-C(24)A-C(24)  | 108.0(20)       | C(3)-C(2)-S(1)       | 109.2(17) |
| F(24)C-C(24)A-C(24)  | 119.9(20)       | C(8)-C(9)-S(2)       | 100.0(15) |
| F(24)C-C(24)A-F(24)B | 95.2(18)        | C(4)-C(5)-S(1)       | 103.9(19) |
| C(7)-C(6)-S(2)       | 101.1(12)       | C(3)-C(4)-C(5)       | 112.1(28) |
| C(8)-C(7)-C(6)       | 122.4(19)       |                      |           |
| C(4)-C(3)-C(2)       | 103.2(20)       |                      |           |
| C(7)-C(8)-C(9)       | 116.4(19)       |                      |           |
|                      |                 |                      |           |

sich während der Zeit der Ausmessung nicht; T = 295 K. Von 3014 gemessenen Reflexen wurden 2831 mit  $F > 2.0\sigma(F)$  als beobachtet genommen;  $-20 \le h \le 20$ ;  $0 \le k \le 19$ ;  $0 \le l \le 14$ ;  $\theta_{\min} = 2^\circ$ ,  $\theta_{\max} = 25^\circ$ ; Absorptionskorrektur  $\mu = 41.21$  cm<sup>-1</sup>. R = 0.0270,  $R_w = 0.0288$ ;  $\rho = 1.841$  g cm<sup>-3</sup>.

Die Struktur wurde mit dem XMY-Verfahren von Debaerdemaeker und Woolfson [7] unter Verwendung des Programms von Debaerdemaeker [8] bestimmt und dann nach der Methode der kleinsten Fehlerquadratsumme erst mit isotropen, dann mit anisotropen Temperaturfaktoren unter Verwendung des Verfahrens von Sheldrick [9] solange verfeinert, bis die Parameter-Verschiebungen kleiner als die Standard-Abweichungen waren.

*Ergebnisse*: Raumgruppe *Cc*; a = 17.333(6), b = 16.072(5), c = 12.354(4) Å;  $\alpha = \gamma = 90.0^{\circ}$ ,  $\beta = 96.48(4)^{\circ}$ . Z = 4; V = 3419.57 Å<sup>3</sup>.

## Literatur

- 1 H.-A. Brune, H. Roth, T. Debaerdemaeker und H.-M. Schiebel, J. Organomet. Chem., 402 (1991) 435.
- 2 H.A. Brune, H. Roth und G. Schmidtberg, J. Organomet. Chem., 412 (1991) 237.
- 3 J.K. Jawad und R.J. Puddephatt, J. Chem. Soc., Dalton Trans., (1977) 1466.
- 4 G.B. Shul'pin, A.E. Shilov, A.N. Kitaigorodskij und J.V. Zeilekrevor, J. Organomet. Chem., 201 (1980) 319.
- 5 R. Walker und K.W. Muir, J. Chem. Soc., Dalton Trans., (1976) 273.
- 6 P.M. Cook, L.F. Dahl und D.W. Dickerhoof, J. Am. Chem. Soc., 94 (1972) 5511.
- 7 T. Debaerdemaeker und M.M. Woolfson, Acta Crystallogr., A39 (1983) 193.
- 8 T. Debaerdemaeker, XMY 84-Programm, Univ. Ulm, 1984.
- 9 G.M. Sheldrick, SHELX-77, Programm zur Kristallstruktur-Bestimmung, Univ. Cambridge, 1977.